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ABSTRACT Due to its wide accessibility, cloud services are susceptible to attacks. Data manipulation is
a serious threat to data integrity which can occur in cloud computing — a relatively new offering under the
umbrella of cloud services. Data can be tampered with, and malicious actors could use this to their advantage.
Cloud computing clients in various application domains want to be assured that their data is accurate and
trustworthy. On another spectrum, blockchain is a tamper-proof digital ledger that can be used alongside
cloud technology to provide a tamper-proof cloud computing environment. This paper proposes a scheme
that combines cloud computing with blockchain that assures data integrity for all homomorphic encryption
schemes. To overcome the cloud service provider’s (CSP) ultimate authority over the data, the proposed
scheme relies on the Byzantine Fault Tolerance consensus to build a distributed network of processing CSPs
based on the client requirements. After certain computations performed by all CSPs, they produce a master
hash value for their database. To ensure immutable data is produced, master hash values are preserved in
Bitcoin or Ethereum blockchain networks. The master hash values can be obtained by tracking the block
header address for verification purposes. A theoretical analysis of the overhead costs associated with creating
master hash values for each of the cryptocurrencies is presented. We found that Ethereum leads to lower client
financial costs and better online performance than Bitcoin. We also specify the data security requirements
the proposed scheme provides, the ground-level implementation, and future work. The proposed verification
scheme is based on public cryptocurrency as a back-end service and does not require additional setup actions
by the client other than a wallet for the chosen cryptocurrency.

INDEX TERMS Blockchain, cloud computing, data integrity, homomorphic encryption.

I. INTRODUCTION

Data security is frequently characterised by data security
threats. The area of cloud computing is no different as it
is prone to various threats. The primary reason for this is
that cloud computing combines many different technologies
in its operation. It is paramount to use the process of risk
management to balance the benefits of security risks, and
cloud computing [1]. Cloud Security Alliance (CSA) [2] is
a non-profit organisation set up for the purpose of enforcing
general security. CSA has laid out essential shared respon-
sibilities for cloud service providers (CSPs) and the clients
to mitigate the risks associated with cloud computing. The
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job of the CSP is to record, design and implement the client
security control and internal security control. The design and
implementation are carried out using a tool known as Con-
sensus Assessments Initiative Questionnaire (CAIQ). A cloud
consumer uses a Cloud Control Matrix (CCM) to document
the people in charge of implementing specific controls and the
manners in which they go about it. Also, a high-level process
model for cloud security management has been developed to
cater to the significant variations of the process model that
are likely to occur in building a cloud project, as illustrated
in Fig. 1. The essence is to find out the necessary require-
ments, structure the architecture, and find any missing spaces
according to the underlying cloud platform’s capabilities.
Despite the CSP’s attempts to establish a strong security
base, such arrangements are rarely substantive from the data
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TABLE 1. Security threats over security domain; Adopted from [3].
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FIGURE 1. CSA Process model for cloud security management [2].

owners’ perspective, especially when it comes to trusting the
CSP itself. This is compounded by the fact that the growth of
cloud computing technology leads to new security vulnera-
bilities and amplifies existing ones. A recent CSA survey [3]
compiled the most significant security issues within cloud
computing, classifying the top 11 threats into 14 security
domains which can be divided into either the governance
or operational domains. The governance domain focuses on
strategic and policy issues within a cloud computing envi-
ronment, whereas the operational domain focuses on tactical
security concerns. Table 1 shows how an enterprise opens
itself to many commercial, financial, technical, legal, and
compliance risks if it adopts a CSP as it is. Most security con-
cerns lead to various threats like identifying spoofing, tam-
pering with data repudiation, information disclosure, denial
of service, and elevation of privilege.
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Data breaches is at the forefront of threat ranking trend
analyses conducted by CSA through 2011, 2016, and
2020 [3], [5], [6]. If such security breaches occur, it would
seriously undermine the validity and trust of a cloud-based
service. A data breach is an event where an unauthorised
entity releases, analyses, steals or uses essential, safe or
confidential information. A data breach can either be the
primary purpose of a targeted attack or a result of human
error, implementation vulnerabilities or inadequate security
procedures. The leak of any information not meant for pub-
lic access is considered a data breach. [7] noted that either
encryption and keys vulnerabilities or data storage cryp-
tography vulnerabilities could lead to data breaches. More
explicitly, the absence of appropriate encryption algorithms
and a poor key management mechanism can contribute to
encryption, and key-related failures that directly impact data
confidentiality and completeness [8]. Weak key management,
defective, insecure, and outdated encryption methods allow
data storage to be susceptible to threats [9], [10]. This has
been further supported in [11] which highlighted that weak
encryption techniques contribute to the most significant risk.

As with any information security management system, fun-
damental cloud security requirements include confidentiality,
integrity, and availability [12]. The problem of data breaches
is directly related to confidentiality and privacy. Confidential-
ity requires that sensitive client data is not disclosed to any
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unauthorised entity, whereas privacy refers to the rights of a
client to have control over how its data is handled. Encryption
algorithms are utilised to achieve both data confidentiality
and privacy requirements. There have been various crypto-
graphic schemes proposed to preserve the security of stored
data and/or processed data. Various symmetric key encryp-
tion algorithms have been used for cloud computing plat-
forms [13]. [14] proposed applying AES to encrypt hard disc
data in XEX-based tweaked-codebook mode with ciphertext
stealing (XTS). [15] provided data confidentiality, privacy,
and availability by employing proxy re-encryption in con-
junction with decentralised deletion code. [16] has released a
secure storage model for cloud data based on Reed-Solomon
(SECRESO) model. They adhere to data security, integrity,
availability and error tolerance by improving Reed-Solomon
code-based encryption, as well as relying on a log-based
backup. [17] established an hourglass protocol to encrypt
data files which, at the same time, enables users to check the
accuracy of the encrypted file.

Although the use of encryption algorithms like AES can be
used to protect data transmitted to the cloud, some findings
indicate that traditional cryptographic algorithms are more
appropriate for traditional IT infrastructure rather than cloud
computing environments [18]. One of the main reasons is
that the stored data requires decryption before any calculation
can be performed [19]. Despite the merits of the previous
proposals in providing adequate security for data-at-rest, it is
not feasible for data processing on an external server. Homo-
morphic encryption (HE) has been proposed to overcome
this issue. HE, an asymmetric key encryption scheme, allows
calculations to be performed on the encrypted data by a third
party without disclosing the corresponding keys. Many HE
schemes have been proposed in recent years with the goal of
improving cloud computing security [20]-[22].

In contrast, because CSP is a centralised management
approach, HE alone cannot fulfil IND-CCAZ2 security notions
against tampering. Therefore, client data is exposed to admin-
istrative risks that may cause data loss or undisclosed manipu-
lation in the database. In order to employ decentralisation and
enhance the manipulation transparency of homomorphically
encrypted data, blockchain (BC) technology is the one pos-
sible solution. Several studies have relied on BC in restruc-
turing the cloud to solve several security issues [23]-[25].
However, they suffer from complicated configuration setup,
and the embedding requires a huge effort and budget.

In this paper, we overcome these existing problems by
proposing a verification scheme based on the notions of BFT
and blockchain technology. More than one CSP will be hired
to store and perform computations on client data. Each CSP
will have to periodically compute a master hash value of their
database to be stored on a public blockchain such as Bitcoin
or Ethereum. These CSPs do not need to collaborate or com-
municate with one another. A client can compare these master
hash values to detect if data tampering has occurred. This
distributed verification system fulfils the requirements of
confidentiality (HE will be used for encryption), and integrity

VOLUME 9, 2021

because data modifications by the CSPs can be detected by
comparing master hash values stored on the blockchain.

The rest of this paper is structured as follows: In Section II,
we provide a detailed explanation of both HE and BC as they
play a major role in solving the problem of CSP centralisation
in processing client data. Next in Section III, we introduce
the proposed scheme. The results, discussion and recommen-
dations for future work are detailed in Section IV. Finally,
Section V provides the conclusion of our proposed scheme.

Il. PRELIMINARIES

The proposed approach in this paper adopts both HE and BC
in a unified approach for maintaining data confidentiality in
cloud computing. Important concepts from both HE and BC
are detailed in Subsections II-A and II-B respectively.

A. HOMOMORPHIC ENCRYPTION (HE)

Once data is stored in the cloud, a client’s sovereignty over
its data is lost, leaving the data vulnerable to many security
threats. [26] were the first to introduce the concept of “pri-
vacy homomorphism” in an effort to solve problems with
external computations. Over time, other proposals with differ-
ent execution classifications emerge [27]-[30], and through
various attempts, a clear definition of HE has been introduced
as follows [31]-[33]:

Definition 1 (Homomorphic Encryption): The conversion
of data into ciphertext where the process has the capacity
to conduct operations on data that is encrypted without any
reach to the private decryption key; the owner of the data
should be the only one in possession of the private key.
In the process of applying arithmetic operations to encrypted
data, the same results should be gotten as in the case of
unprocessed data.

The first process of HE is key generation KeyGen, where
the data owner creates the public-key pair (a public key puk
and a private key prk). The next is the encryption process
Enc which involves applying the encryption algorithm onto
the data C = Encp,(P) before sending it to the cloud
server. At the cloud server, the puk and the encrypted data
are stored in a database. When instructed by the client,
the cloud server performs the requested calculation on the
encrypted data before sending the result back to the client
in its encrypted form. This is known as the evaluation pro-
cess, Eval. With the corresponding prk, the client is able to
process the decryption function, Dec, to recover the plain-
text. To sum up, HE has four main operations, namely:
KeyGen, Enc, Eval, Dec.

Despite the advantage of a homomorphic cryptosystem,
by malleability nature, all designs are not IND-CCAZ2 secure.
This can lead to erroneous outsourced computations. It is
important to note that these problems can occur even without
decryption [34]. Thus, the use of HE schemes alone does
not guarantee full data security. Data integrity can still be
compromised by CSP and can go undetected. For exam-
ple, the CSP can implicitly substitute a given ciphertext or
the cumulative result with other valid ciphertexts without
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knowing the content of the substituted data. Once integrity
is compromised, there is no way to restore the original data.
Therefore, data integrity needs to be enforced on such out-
sourced computations. In addition, a CSP is considered a third
party that a client assigns to perform complex computations.
The centralised nature of these computations and the author-
ity to modify data are also threats to data integrity. The use
of protocols such as Secure Shell (SSH) does not overcome
these issues as it has no support for authentication.

To establish a secure CSP platform apart from encrypting
data homomorphically, there is a need for a robust, tamper-
proof, and verifiable security architecture. These are the prop-
erties of the BC architecture that consists of a distributed
ledger (or database) of congregated transactions managed by
a peer-to-peer network working to validate blocks [35]. CSP
and BC technologies look conflicting in architecture, namely,
centralisation versus decentralisation as illustrated in Table 2.
However, CSP and BC can complement one another in a
unified solution to take advantage of both their benefits [36].
We take an in-depth look at BC in the upcoming subsection.

B. BLOCKCHAIN TECHNOLOGY (BC)

Implementing BC techniques in cloud scenarios have
attracted considerable attention in both academia and indus-
try. BC technology, in essence, consists of distributed digital
blocks bound to each other based on cryptographic principles.
Each block contains a cryptographic hash of the previous
block, a timestamp and transaction data. BC grant all partici-
pants the ability to authenticate transactions independently on
a peer-to-peer network. To approve and record transactions
in the BC, a consensus mechanism is required to ensure that
the network of nodes is in agreement. Once a block is vali-
dated, it cannot be altered retroactively without modification
of all subsequent blocks. NIST defines BC technology as
follows [37]:

Definition 2 (Blockchain): Distributed digital ledgers of
cryptographically signed transactions that are grouped into
blocks. Each block is cryptographically linked to the previous
one (making it tamper evident) after validation and undergo-
ing a consensus decision. As new blocks are added, older
blocks become more difficult to modify (creating tamper
resistance). New blocks are replicated across copies of the
ledger within the network, and any conflicts are resolved
automatically using established rules.

Several businesses catering to the interest in BC technolo-
gies by developing cloud-based BCs. Well-known CSPs have
provided Blockchain as a Service (BaaS) to their clients based
on the Software as a Service (SaaS) model. [38] launched
the Amazon Managed Blockchain using open-source soft-
ware platforms such as Ethereum and Hyperledger Fabric
that allows developers to create and share information in a
decentralised manner easily. [39] has proposed a model with
improved efficiency that allows users to record and track
transactions at the audit level. [40] collaborated with Consen-
Sys to present Ethereum Blockchain as a Service (EBaaS) on
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TABLE 2. Comparison between distributed ledger and centralized
database; adopted from [37].

Parameter

Distributed Ledger
BO)

Centralized Database
(CSP)

Distributed Ledgers:
Participants can own and

Centrally Owned DB: The
user must trust the DB

DB maintain their own copy of ~ owner and accept risks
Ownership  the ledger. This design of (exposure, loss or
many backup copies makes  destruction).
ledger destruction very
difficult.
Secure: Its distributed Not Secure: Users must
nature prevents a one-point  trust the authorised
Security attack. If an attack happens ~ computer system to deal

to any one of the nodes, it
will not affect the overall
system.

with security issues and
implement security
countermeasures.

Validation: BC network
prevents all invalid
transactions from being
propagated throughout the
network.

No Validation: A user must
trust the database owner to
validate transactions.

Transactions

Complete: Adding new
blocks to the BC must
depend on hash references
to previous blocks
otherwise transactions are
deemed incomplete.

No Evidence: A user must
trust the DB owner to
include all validated
transactions (which might
not happen).

Tamper Resistant: Digital
signatures and message
digests (from cryptographic
hash functions) are added to
transactions to achieve
tamper resistance.

Alterable: A user must trust
the DB owner to preserve
past transactions.

Heterogeneous Network:
Software and hardware may
be distributed throughout

Homogeneous Network:
Software and hardware are
located within the same

Network  the network. Such an network infrastructure
infrastructure has multiple which increases resilience
points of attack. against attacks.

Globally Located: Various Centrally Located: Access
nodes distributed around to the DB can be adversely
the globe work together ina  affected if there are

Location  peer-to-peer manner, network outages in this

making the network fault
resistant. The network will
still remain functional
despite losing a node or
entire region of nodes.

specific location.

Microsoft Azure. This model makes it easier for companies to
collaborate and experiment with different business processes
before launching them in-house. The R3 consortium with
the largest group of financial institutions also proposed a
distributed financial ledger known as Corda [41]. Although
many entities are actively developing new services and fea-
tures within the BC space, none of them specifically address
the issue of CSPs and their control over client data.
Researchers have also investigated the combination of both
technologies. [23] proposed a cloud-based IoT architecture
for tracking data stored in the cloud that can be activated by
a blockchain-based software-defined network (SDN). In the
same vein, a smart contract solution for data allocation
has been proposed by [24] to introduce automated resource
management using a blockchain network. [25] introduced a
blockchain-enabled data tracing method known as ProvChain
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to protect data being used during the provisioning process.
The main concern of the aforementioned methods is the data
origin of distributed computing. Similarly, there is a lack of
work dealing with the centralised nature of CSPs and their
related security issues.

BC technology is also referred to as trust machines [42]
because their architecture utilises well-known mechanisms of
computer science and cryptographic primitives together with
record-keeping principles. The main component within a BC
network is a cryptographic hash function which is utilised for
address derivation, creating unique identifiers, securing the
block data, and securing the block header [37]. Hash func-
tions are designed based on three main properties: preimage
resistance, second preimage resistance, and collision resis-
tance [43]. Federal Information Processing Standard (FIPS)
180-4 determined different specifications for NIST-approved
hash functions [44]. The proposed work utilises Secure Hash
Algorithm 2 (SHA-2) with an output size of 256-bits to cal-
culate its master hash value. There are specialised instruction
sets for CPUs such as Intel that supports hardware accel-
eration of the SHA family, making it efficient to compute.
SHA-2 has an output of 32-bytes (1-byte = 8-bits, 32-bytes =
256-bits), and is generally displayed as a 64-character hex-
adecimal string [45]. Hash functions such as SHA-2 are also
used in some consensus mechanisms such as proof-of-work
(PoW). A consensus protocol or mechanism is a fundamental
building block of a BC as it is a means of selecting nodes to
publish new blocks.

BC technology has the potential to create greater trans-
parency and fairness while also saving companies time and
resources. Numerous BC-based applications are involved in
the marketplace with different industries such as cryptocur-
rencies, cybersecurity, the Internet of Things, healthcare,
business, logistics, supply chain, and many other real-world
applications [46]. Our proposed work relies on cryptocurren-
cies, one of the earliest and still arguably the most well-known
use case of BC technology [47]. We will be utilising Bitcoin
and Ethereum, two of the most popular cryptocurrencies in
the market today.

1) BITCOIN

Bitcoin (BTC) was the first and most popular cryptocurrency
in the market, proposed by Nakamoto in 2008 [48]. BTCs
are obtained as rewards via mining (calculating the PoW
puzzle) and can be transferred between Bitcoin accounts.
Each transfer is recorded in a transaction that will be stored in
ablock on the BC. All participating nodes store the same copy
of the Bitcoin BC. Nodes who are successful in computing the
PoW are selected as block leaders to create, broadcast and
append a new block to the BC. If all transactions within the
block are valid, other nodes will accept the new block and
include it in their own copy of the BC.

Cryptocurrencies rely on digital wallets to facilitate trans-
actions and manage key pairs for receiving and sending
cryptocurrency [49]. The Bitcoin wallet’s main role is to
store the private key used to redeem BTC and to calculate
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public addresses. From a technological point of view, BTCs
themselves are not physically stored in the wallet. Instead,
they exist on the BC, accessible only by those with the
correct private keys. Private keys are also used to “‘sign”
transactions [50]. Free Bitcoin wallets are designed to address
a variety of client needs across all major operating systems
and apps. There are a variety of different wallets offered
by various platforms. While they all share some similar
functionality, features differ from wallet to wallet. One of
the most valuable features is a shared wallet known as the
multi-signature wallet, or multisig wallet [51].

A multisig wallet is accessible by two or more keys and
requires at least one to authorise a BTC transaction. Other
than standard transactions signed by a single owner of a
private key, multiple people are required to sign before the
funds can be transferred. It is more secure as it restricts
actions on BTC. More specifically, if an attack occurs to one
of the wallets, the hacker will not be able to spend BTC from
the shared wallet without authorisation from its other owners.
Moreover, in a community, it strips off the purchasing control
from third party hands as well as tracking participating parties
by accessing the transaction history of a single wallet.

2) ETHEREUM

Ethereum is not just a cryptocurrency network but rather
a network of independent computers that function together
as one supercomputer [52]. It is flexible in allowing the
establishment of transactions over either permissioned or
permissionless network. It supports more than just cryptocur-
rency transactions as it is a BC-based platform for executing
smart contracts. This platform is known as the Ethereum Vir-
tual Machine (EVM). All smart contracts are compiled into
specific bytecode to deploy on the EVM. As the Ethereum
platform is Turing-complete, any type of rule or functionality
can be described by a smart contract. Ethereum has two
main types of accounts: externally owned accounts (EOA)
and contract accounts (CA). EOAs are controlled by private
keys and have no associated bytecode, whereas CAs have
associated code (known as smart contracts) and data storage.
Both accounts can communicate with those identical to them
and also with one another albeit in different ways [53]. The
circulated currency between peers in the Ethereum network
is known as Ether.

Depending on the type of account, an Ethereum wallet is
either a normal wallet (similar to a BTC wallet) for EOAs
or a smart contract wallet that can additionally write, deploy
or trigger smart contracts in a CA using the Solidity pro-
gramming language [54]. Contracts can implement two types
of wallets, simple wallets and multisig wallets. In general,
the simple wallet only has one account which controls and
owns the wallet, whereas a multisig wallet has more than one
owner account, one of which is the creator’s account [55].

Although Ethereum transactions can be used for multiple
purposes, its transaction structure is the same [56]. Any trans-
actions must include at least the following data types:
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FIGURE 2. Flow diagram.

o From: 20-byte address of the transaction initiator’s 1) Multi-CSPs: A client will hire more than one CSP.

account

To: 20-byte address of the recipient’s account
Value: The amount of fund in Wei (1 Ether
10'8 Weis).

Input: Data input of various types and size

Gas Price: Determines the cost of executing each oper-
ation in a smart contract

Gas Limit: The maximum amount of gas that can be

Each established CSP has its own contract with the
client but all are subjected to the same terms [57]. The n
number of hired CSPs will perform computations, upon
completion of which will produce a master hash for
their database and forward the result to the BC-based
application.

BC-based application: Creates new blocks that con-
tain the master hashes as a transaction, then returns the

block header to CSP.

Client: Clients can perform verification by compar-
ing master hash values from each CSP based on the
received block header information.

Before going through a detailed description of each stage,
the client should determine two main aspects that define the
design workflow: the frequency of computing master hash
values (determined by a frequency variable, ¢) and the corre-
sponding cryptocurrency wallet. ¢ determines the number of
computations requested by a client before the multi-CSPs are
required to compute the master hash of their corresponding
databases. The value of ¢ depends on two main factors. The
first is the client’s data growth percentage, and the second
is his financial ability to pay the BC transaction fees. Also,

consumed before execution halts
3)
IIl. PROPOSAL DESIGN
The verified computation design is based on CSP and BC
technologies which both play an equally crucial role. To intro-
duce our proposed design, we first discuss the client ver-
ification process of operations applied to requested data,
beginning with employing more than one path for perform-
ing computations before storing the results on the BC to
achieve immutability (see Fig. 2). The verification process
(as illustrated in Table 3) will consist of three main com-
ponents (which correspond to the three main phases of the
proposed verification scheme) which are the multi-CSPs,
BC-application and client, whose roles are detailed below:
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Report:
CSP-B: (x)

CSP-A: ()

Report: ,
CSP-A: (y) It’s (x)!
CSP-B: (x)
CSP-C: (7) - N
Final Result: (y) Its O
FIGURE 3. BFT Concept.
TABLE 3. Proposed verification scheme.
1.| Client : Homomorphically Encrypt Data
ci = Encpyr(my).
2.| Client — CSP No.l | : Store [encrypted data (c1, c2, ¢3,...,cn)l.
Client — CSP No.2 | : Store [encrypted data (c1,c2, ¢3,...,¢n)l.
Client — CSP No.3 | : Store [encrypted data (c1, c2, ¢3,...,cn)].
Client — CSP No.4 | : Store [encrypted data (c1, c2, ¢3,...,¢n)].

3.| Client — CSP No.1
Client — CSP No.2
Client — CSP No.3
Client — CSP No.4

squeryy [Cr = ¢z © ¢yl
squerys [Cr = ¢z © ¢y].
squerys [Cr = ¢z © ¢yl
squeryy [Cr = ¢z © cyl.

4.| Client <+ CSP No.l |: Transaction Log Hash; [homomorphically
— BC encrypted (DB)].
Client <+ CSP No.2 |: Transaction Log Hasha [homomorphically
— BC encrypted (DB)].
Client <> CSP No.3 |: Transaction Log Hash3 [homomorphically
— BC encrypted (DB)].
Client <+ CSP No.4 | : Transaction Log Hashy [homomorphically
— BC encrypted (DB)].

5.| BC — CSP No.l < | : Block Header [Transaction Log (Hash)].

g](;eri CSP No.2 < | : Block Header [Transaction Log (Hashz)].
gge'i CSP No.3 < | : Block Header [Transaction Log (Hash3)].
(B:geli CSP No.4 < | : Block Header [Transaction Log (Hashg)].
Client

6.| Client : Hashyer = Hashy ® Hasho @ Hashs ®

Hashg
_ JifHashyer = 0; true
| Hashyer = 1; otherwise

the transaction fee amount and the client’s budget are essen-
tial factors that will be discussed in Section IV-A. Clients
must also prepare their cryptocurrency wallet and share its
address with the CSP in order to monitor or verify master
hash values. The proposed work will rely on either Bitcoin or
Ethereum cryptocurrency. Despite their differences, the steps
involved in setting up a wallet are the same [58].

VOLUME 9, 2021

CSP-C: (x)
Final Result: (x)

A. CSP - COMPUTATION PHASE

To perform verification in the CSP environment, we adopt
certain BC’s BFT consensus features and put them into prac-
tice. The proposed work will also rely on hash functions as
well as the properties of the distributed ledger. The concept
of utilising many different nodes in creating a new block is
adopted by the proposal, such that the client receives support
via multiple CSPs as opposed to just one. The number of hired
CSPs is determined based on the BFT scenario. If f CSPs are
Byzantine (or malicious), and the system consists of 2f + 1
CSPs, the malicious CSPs coordinate to say arbitrary things
to the other f + 1 nodes.

For example, a system is attempting to reach a consensus
on the outcome of the calculation (x). Letf = 1 and the num-
ber of CSPs can be calculated as N = 2f 4 1 = 3. The three
CSPs are denoted as CSP-A, CSP-B, and CSP-C, respec-
tively. Assuming that CSP-C is Byzantine, Fig. 3 illustrates
how CSP-C can prevent a consensus from being reached
by all three CSPs. CSP-C informs CSP-A that its outcome
is y while informing CSP-B that its outcome is x. As the
results obtained from CSP-C correspond to each of their own
results, CSP-A and CSP-B both accept the results y and x
respectively because this is the outcome with the most votes.
Thus, the upper limit of f for Byzantine faults should be set
tof < %V [59]. Therefore, in order to tolerate one Byzantine
node, the minimum requirement is N = 4 CSPs. The pro-
posed work will be analysed under the assumption that there
are at least N = 4 CSPs. The following points summarise the
operations that will be performed by a single CSP:

1) Calculate the master hash value of its database by
applying SHA-2 after ¢ times of requested computa-
tions.

2) The CSP saves the master hash in a transaction log and
forwards it to the mining pool to be stored in the BC
network.

To avert 51% attacks, the proposed work relies on the fact
that there is no direct communication between the multiple
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FIGURE 4. Currency flow.

CSPs. In reality, this will be the case as these CSPs may
be from different organisations or companies. Assuming that
the CSPs can directly communicate with one another, having
three malicious CSPs can lead to peer consensus on faulty
data and documentation of transactions containing wrong
master hashes. Instead, authentication is achieved with the
help of the BC.

B. BLOCKCHAIN - MASTER HASH PHASE

To store the master hash values, we consider two popular
cryptocurrencies, Bitcoin and Ethereum. Despite having dif-
ferent architectures and features, the flow of currency from
the CSP’s wallet to the network is the same for both, as illus-
trated in Figure 4. In the following subsections, detailed
explanations on each of these steps will be provided with
respect to Bitcoin and Ethereum.

1) BITCOIN
Step 1 - Setting up BTC wallet:

The client will have four multi-signature wallets, one for
each of the hired CSPs. On each wallet, there will be three
signature keys created, whereby at least two-thirds of those
keys are required to perform BTC transactions. Two keys are
at the client’s disposal, and the third key is held by CSP. The
client’s keys need to be stored in two different locations: one
in the client’s wallet and the second is in a safe repository
(such as a hardware wallet) as a backup recovery key. Thus,
the majority of keys is in the client’s hands, and if the first key
has somehow been lost, the second key can still be used. After
enabling the wallet, wallets should have at least 546 Satoshis
(equivalent to 0.00000546 BTC) amount of Bitcoin for the
proposed scheme to be used.

Step 2 - Prepare raw transaction and embed master hash:
This step can be performed assuming that the shared wallets
have already been established and the master hash is ready to
be stored in the Bitcoin BC. The individual steps to prepare
the raw transaction and embed the master hash value are as
follows:

1) Create multisig transaction address: Each CSP and

the client have to create their own cryptographic key
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2)

redeem it in the
network

Q)

C)

Add the transaction to
a block and miners
using a consensus

mechanism to confirm

the block to join the
chain

pair consisting of a unique public key and a correspond-
ing private key. From the two public keys, a multisig
address will be generated. This process is repeated
twice to create two different addresses: one represents
the input, and the second represents the output. This
allows BTC exchange between two different addresses
inside the same wallet [60].

Creating raw transaction and writing master hash
in transaction data: A Bitcoin transaction is a collec-
tion of data that describes a BTC transaction. The pro-
posed work will comply with the standard transaction
data structure [61] while making modifications only to
the output ScriptPubKey data.

Bitcoin network is a financial transaction record not
meant to store arbitrary data [62]. However, developers
have come up with numerous ways to encode data in
transactions based on different standard scripts. We are
concerned with two types of scripts: the Pay To Pubkey
Hash (P2PKH) script and the NULL DATA script.

In the first scheme (P2PKH script), the programmer can
store arbitrary data where the hashed public key should
be [63]. This means that only 160 bits are available
to encode data. The CSP could apply this scheme if
SHA-1 was used instead of SHA-2 to calculate the
master hash. However, this approach has both security
concerns (shorter hash values can lead to attacks) and
efficiency concerns as it has a detrimental impact on the
users’ memory. The efficiency problems stem from the
fact that the output is not easily distinguishable from
the standard locking script. Hence they have to be kept
in the unspent transaction output (UTXO) set, a waste
of RAM.

The second scheme depends on the NULL DATA
script [64], a standard script that allows pushing meta-
data onto the BC. The idea works by inserting an
additional output and placing a NULL DATA lock
script on it. This script overcomes the security and
efficiency concerns of the first scheme. Bitcoin core
version 0.12.0 allows storing a maximum of 83-bytes
of metadata. Also, it contains the OP_RETURN script
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opcode, which makes it provably unspendable. Hence,
it is not necessary to preserve it in the database of the
UXTO, thus saving RAM space. A transaction can,
however, only contain one NULL DATA locking script
in order for it to be certified as a standard transaction.
Since we are adopting SHA-2 in the proposed scheme
to generate master hash values, we will be utilising this
approach.

Step 3 - Signing transaction and broadcasting to the Bit-
coin network: When spending from a multisig address, both
the CSP and client need to sign the encoded transaction with
their private key. Then, the CSP broadcasts the encoded trans-
action to the network, which will be collected and included
into blocks by miners. These blocks will later be appended to
the Bitcoin BC upon producing the PoW.

2) ETHEREUM

In the following subsections, we look at two possible master
hash storage scenarios for each Ethereum account type based
on the currency flow in Figure 4.

C. EXTERNALLY OWNED ACCOUNTS
Step 1 - Setting up ETH wallet: Normal Ethereum wallets
store private keys and offer a public ETH address for user
accounts [65]. To perform an ETH transaction, each of the
hired CSPs has to get a normal wallet. In other words,
the CSPs need to be light nodes. However, EOA does not
support multi-signatures.

Step 2 - Prepare raw transaction and embed master hash:
The following illustrates the transaction layout (in JSON
format) that CSPs will implement:

i o
2| "from":"CSP EOA address",
3] "to":"CSP EOA address",

4 "value":"fund",

s/ "input":"master hash ",

6] "gas limit":"larger enough",

71 "gas price":"determined by initiator"

|}

Step 3 - Signing transaction and broadcasting to Ethereum
network: To release a transaction on the Ethereum network,
the transaction should be signed by the private key of the
initiator account. The signed transaction is submitted to the
local Ethereum node, which validates the signed transaction
to ensure that it was really signed by this account’s address.
In the final stage, the signed transaction is broadcast to all
peers in the network.

D. SMART CONTRACT ACCOUNTS

Step 1 - Setting up ETH wallet: A multisig wallet in Ethereum
is a smart contract deployed for storing ETH that belongs
to multiple owners. Each transaction must be approved by
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a specified number of owners [55]. With respect to the
proposed scheme, the client will deploy four shared smart
wallets, one for each CSP. There will be three owner accounts
on each shared smart wallet: the CSP and two client accounts.
To approve a transaction, the two-thirds rule is applied. After
launching the shared smart wallet between the client and
CSPs, like any other Ethereum address, ETH can be sent to
this wallet.

Step2 - Prepare raw transaction and embed master hash:
Smart contract deployment in the Ethereum network is per-
formed via transactions. The transaction structure is the same
as an EOA, but the data included in the transaction dif-
fers [56]. The input data should include the bytecode plus any
encoded arguments if required by a constructor. To deploy
a multisig contract to the Ethereum network, the CSP will
execute the submit_Transaction function to make an ETH
exchange order. This can be performed if the wallet has
sufficient ETH. A transaction_Id or hash code is returned
to CSP as a response. The CSP will disclose this transac-
tion_Id to clients so that the clients can validate it. When the
client gets the transaction_Id from CSP, the client can use
the transaction_Id to check the transaction data. By invok-
ing the confirm_Transaction function, the client can approve
the transaction. The pseudocode of multisig contract can be
presented as follows:

Algorithm 1 Multisig Contract in Ethereum Network
1: set maximumOwners = 3
2: if maximumOwners is occupied then
3: for each owner do

4 call submit_Transaction( )

5 return transld

6: call confirm_Transaction( )

7 end for

8: end if

9: procedure confirm_Transaction( )
10: if msg.sender & transld = true then
11: call execute_Transaction( )
12: end if

13: end procedure

While the multisig contract alone does not have the func-
tionality to store arbitrary data, the CA can deal with data
storage differently. Data could be saved as a variable or log
event, both of which are suitable for smart contracts. On the
other hand, storing data as a variable facilitates the efficient
search for data and state changes. Both of these approaches
are detailed below:

o The first option is to save arbitrary data as a vari-
able [66]. Each smart contract has data storage of its
own, in the form of an array of 223 byte values. We can
store in this array, and every non-light (full) node will
have a copy of this state. In other words, every smart
contract is able to store data in its own database as a vec-
tor, i.e. 32-byte values referenced by 32-byte keys. Thus,
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the CSP will write the master hash data into the smart
contract storage space via the SSTORE opcode with a
hexadecimal counterpart of ‘0 x 55’. The master hash
data is considered as a fixed-size array with 32-bytes,
so it takes one slot of storage as shown in the following
pseudocode:

Algorithm 2 CA Variable Data Storage
1: if uint256 [1] Master_Hash then
2: set struct entry = uint256 value
3: end if

o The second option is preserving arbitrary data as a log
event [67]. Once the contract implements a transfer
operation, a log record is created to describe the event
emitted. The log record contains event-related informa-
tion, followed by some additional data. Record data can
include large or complicated data types like arrays or
strings. While this data storage is not indexed by design
(not searchable), a CSP can customise this space to store
the master hash data as following:

Algorithm 3 CA Log Event Data Storage
1: set event Storage = uint256 value

In the proposed scheme, we will embed the value of the
master hash as both options.

Step 3 - Signing transaction and broadcasting to Ethereum
network: All accounts in an Ethereum network follow the
same procedure in sending out the transactions: signing the
transactions with the private key and broadcasting transac-
tion to local nodes which are responsible for validating and
redistributing the transaction to their own peers.

E. CLIENT PHASE - VERIFICATION

After storing the master hash in the BC, it is now the client’s
role to verify that the values sent by all CSPs are identical.
Verifications differ according to the different platforms used
in this research, so that this process will be discussed sepa-
rately with respect to the Bitcoin and Ethereum models.

1) BITCOIN VERIFICATION

The verification of master hash values is simple if the client
selects the Bitcoin platform. That is due to the multisig wal-
lets with each hired CSP, which means the client must first
agree before BTC transactions can be made. When the client
is required to agree on a BTC transaction, the client has the
ability to read the stored data value inside the transaction.
Nevertheless, it is not logical for the client to continue ver-
ifying the data this way, especially if ¢ is small. Therefore,
at any time that the client wants to verify the hash values,
the corresponding block headers of blocks that contain these
transactions can be referred to. The block header contains a
4-byte long timestamp that indicates when the block has been
included in the BC. The client has to select the transactions
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that happen approximately within the same time period and
compare their shared values.

2) ETHEREUM VERIFICATION

Verification using Ethereum will vary depending on the type
of account being used. For EOAs, each CSP is required to
send the block header to the client for each transaction. This
allows the client to track all transactions and perform veri-
fication. As for CAs, the client can obtain the block headers
associated with the CSPs’ transactions from the multisig wal-
lets. Thus, the verification process can be performed based on
the timestamp data in each block header. The approach based
on CA outperforms EOA due to its ability to set up the shared
wallet, which facilitates the data verification process.

IV. RESULT AND DISCUSSION

In this section, we theoretically evaluate the implementation
costs and performance of the proposed scheme based on each
BC-related model. The purpose of these calculations is to
determine which model is the most financially feasible option
and has the best online performance. We exclude the cost
of hiring the CSPs and the computational time of the hash
functions in our calculations.

A. COST ANALYSIS

1) BITCOIN-BASED COST ANALYSIS

At the time of writing this paper, BTC is currently trad-
ing at 33,792.00 USD! [68]. Since the price of BTC
is very high, the proposed scheme will only rely on the
smallest BTC trading amount possible, taking into con-
sideration network requirements and transaction fees. [69]
reported in early 2020 that the transaction fee is, on average,
0.00001 BTC, which is equivalent to approximately $0.09.
Generally, the minimum BTC trading amount is based on
how the client obtains BTC (e.g. a cryptocurrency exchange).
Suppose, for the sake of argument, the client chooses a
Luno [70] which allows users to buy BTC from 0.75 $. Thus,
the client runs into two problems: transaction fees and dust
rules [71]. The transaction fees are very close to the holding
BTC amount, in which after some time, the fee required to
redeem a new transaction will be more than the money that
the client is sending. Dust rules mean that transactions with
outputs below a specific size will simply be dropped. If one
of these problems occurs, it will negatively affect the perfor-
mance of our proposal. More clearly, it delays the process of
chaining the transaction in a block, and consequently, it can
cause significant time differences in established blocks for
each CSP or even the failure to block a transaction for one of
the CSPs.

2) ETHEREUM-BASED COST ANALYSIS
The trading value of Ethereum’s cryptocurrency is 97%

lower than Bitcoin. 1 ETH costs approximately $1,022.43
USD! [72]. If the CSP opens an EOA, the master hash value

1 As of 1313 January 2021
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will be a part of the transaction. The cost of every zero-byte
transaction is at least 21, 000 gas [73]. Each additional byte
of transaction data incurs a cost of 68 gas. Thus, the total cost
of storing the master hash value generated from SHA-2 is
about $0.006'8 USD. The estimated cost of transaction fees if
transactions are performed continuously every half an hour is
around $105 USD per year. We now analyse the additional
costs associated with the two data storage approaches for
Ethereum.

The first option is to store arbitrary data as a variable in
the smart contract’s data storage. The number of SSTORE
operations determines the expenses involved in saving data.
In order to store a master hash value of 32-bytes, one SSTORE
transaction is required to convert data from zero to non-zero,
at the cost of 20, 000 gas. As previously mentioned, each
operation costs a minimum of 21,000 gas as a carrier. Extra
gas is incurred due to the data payload of the operation which
comprises the actual data and function signature. There is
also an extra cost for the creation of the smart contract itself.
The total cost is estimated to be over 0.010 USD(20, 000 +
21,000 + 32 x 68 gas).

The second option is to save data as a log event. To com-
pute cost, many aspects need to be taken into consideration.
Firstly, logged data is saved in log topics at the cost of 375 gas,
while every byte of data in the log topic incurs an additional
8 gas. A rough estimate of utilising a log event in storing
32-bytes of data is 0.005 USD(21, 000 + 375 + 32 x 8 gas).
The fixed cost of the carrier operation and the data payload is
included. Storing and modifying data as a variable in a CA is
more efficient but less adaptable due to the restrictions of the
Solidity language on the types of value and length.

Table 4 provides a quantitative comparison of verification
overhead costs for embedding data in Bitcoin transactions,
EOA transactions, or as a variable data and log event in CAs.
Fig 5 illustrates the average verification overhead cost for all
these options.

B. PERFORMANCE ANALYSIS

The BC network performance depends on the transaction
price (the miner’s reward for including the transaction inside
a block) and network congestion. If the client wants to reduce
the waiting time for the transaction, the profit percentage
must be increased to attract miners, which increases the
overall cost. Inversely, reducing the cost will increase waiting
time. This can lead to synchronisation problems, whereby
the master hash values from different CSPs take too long
to be included in a block or are included in different blocks
at different times. This will make it difficult for a client to
verify the master hash values as the client needs to locate
master hash values from within the same timeframe (based
on timestamps). Thus, this is a trade-off between overhead
costs borne by the client and performance.

Furthermore, performance also depends on additional tasks
specific to a particular approach. In the case of Bitcoin,
CSPs embed master hash values using the NULL DATA
script whereas embedding master hash values in an Ethereum
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TABLE 4. Overhead costs for verification.

(a) Bitcoin Costs

Transaction fee Master hash every

total cost in 30 min One hour Halfday One day
One day $4.32 $2.16 $0.18 $0.09
One week $30.24 $15.12 $1.26 $0.63
One month $131.4 $65.7 $5.475 $2.738
One year $1576.8  $788.4 $65.7 $32.85
(b) EOA Costs
Transaction fee Master hash every
total cost in 30 min One hour Halfday One day
One day $0.288 $0.144 $0.012 $0.006
One week $2.016 $1.008 $0.084 $0.042
One month $8.76 $4.38 $0.365 $0.1825
One year $105.1 $52.56 $4.38 $2.19
(c) CA (Variable Data) Costs
Transaction fee Master hash every
total cost in 30 min One hour Halfday One day
One day $0.48 $0.24 $0.02 $0.01
One week $3.36 $1.68 $0.14 $0.07
One month $14.6 $7.3 $0.608 $0.304
One year $175.2 $87.6 $7.3 $3.65
(d) CA (Log Event) Costs
Transaction fee Master hash every
total cost in 30 min One hour Halfday One day
One day $0.24 $0.12 $0.01 $0.005
One week $1.68 $0.84 $0.07 $0.035
One month $7.3 $3.65 $0.3042  $0.152
One year $87.6 $43.8 $3.65 $1.825
—&— Bitcoin #— EOA CA variable CA event log

$1,000.00

$100.00

Transa
_ction $10.00
fee

(USS$).

$1.00

$0.10

$0.01

1 DAY 1 WEEK 1 MONTH 1 YEAR

Time period per each verification process.

FIGURE 5. Average of verification overhead cost for all options.

transaction will not require opcodes. In contrast, CA options
will require many function calls to store the master hash.
Table 5 illustrates the comparison between cost and perfor-
mance for all options.
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TABLE 5. Blockchain overhead cost vs performance comparison.

Option Cost Performance
Embedded in transaction (Bitcoin) €D SDD
Embedded in transaction (Ethereum) & @ P DD D
CA variable (Ethereum) DD DD

CA log event (Ethereum) PPPHP b

D: Least favorable, (D €D: Less favorable, P @ P: More favorable,
P D P P: Most favorable

C. SECURITY ANALYSIS

In this subsection, we analyse the security of the proposed
verification scheme from the perspectives of confidentiality,
privacy and data integrity.

Confidentiality. Confidentiality is fulfilled by default
because the client should already be using HE when storing
data in the cloud. The data is encrypted with the public key
and can only be decrypted with the corresponding private key
in the client’s possession. Therefore, this cryptosystem allows
access to client data without disclosing it to unauthorised
individuals and entities, including the CSP.

Privacy. The client can authorise a CSP to perform data pro-
cessing via the HE scheme. This is performed by providing
the public key of the encrypted data to the CSP. Thus, client
data is immune to false or unauthorised collect, use, and/or
disclose attacks.

Integrity. We assume that a malicious CSP can perform com-
putation attacks (computations not requested by the client).
Based on the principle of BFT consensus, there are at least
4 CSPs. All of these CSPs have to create the master hash
for their database, which is then stored on the BC. The block
header will be provided to clients for verification purposes.
When the client verifies the master hash values of each CSP,
the malicious CSP will be revealed as its hash value will differ
from the rest. Thus, client data is not modified or deleted in
an unauthorised and undetected manner.

D. IMPLEMENTATION ANALYSIS AND FUTURE WORK

The proposal is easy to establish because it does not require
writing codes to reengineer the cloud structure or change the
architecture of CSP processing. It just requires that the CSP
perform additional operations. The first operation calculates
the hash value of the CSP’s database, then embedding the
hash within a BC transaction. The proposed scheme is also
scalable because a client can hire any number of CSPs as
long as it is no less than 4. Furthermore, the proposed scheme
does not require communication or consensus between the
CSPs themselves. Thus, the proposed scheme does not suffer
from unpredictable data and challenges arising from CSP
desynchronising with the client.

Despite the various advantages, the proposed scheme can-
not provide information about which data records have been
attacked or tampered with. In future work, we aim to imple-
ment a feature that can pinpoint the erroneous data records in
the CSP’s database.
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V. CONCLUSION

This paper focuses on addressing data breaches in cloud
computing and the all-encompassing cloud service provider
authority over client data operations. We propose an approach
that improves the client’s ability to protect data. The proposed
scheme relies on homomorphic encryption to provide data
confidentiality and privacy during outsourced computations.
In order to ensure data integrity and detect data tampering
from the cloud service provider itself, a novel approach
based on a distributed network of cloud service providers
and Byzantine Fault Tolerance consensus is introduced. In the
proposed scheme, there is no need for direct communication
between the multiple cloud service providers. To provide the
client with immutable verification data, the cloud service
providers are required to calculate master hash values of their
databases and store them in blockchain networks, namely
Bitcoin or Ethereum. We provided a quantitative analysis of
overhead costs based on several time options to suit different
client requirements. Embedding the master hash value as
a log event in the Ethereum network has shown to be the
least expensive of all options (around $88 USD annually)
when consistently generating master hash verification values
every 30 minutes. On the other hand, the model with the
most efficient online performance is where the master hash
values are embedded as a variable in an Ethereum transaction.
We also analysed the security requirements and explained the
ease of implementation of the proposed scheme.
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